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ABSTRACT

This paper reviews atempts at signal detection in Gaussian noise using a higher order

statistical (Hligher Order Spectra (HOS) or polyspectra) technique. Examples comparing power

Spectral and b-spectral analysis include the following topics: the identification of signals generated

by a system of coupled nonlinear differential equations, radar backscaner pfocessuin and target

idntificaton, and a statistica treatment of the detection of narrowband harmonic components

resulting in a Receiver Operaing Caacteristic (ROC) curve.

The critical signa and noise probability density functorn (pdt) assumptions fror-

polyspectra dheoy which must be met for more effective noise suppression relative to classical

second order power spectral methods are: (I) discussed in relation to detectio results as reported

in the liteur review, and, (2) illustrated via exampl.using both direct and Indirect

non ametric Discrete Fourier Transform (DFl) bispectnims employing Fast Fourier Transforms

(FF1 for both simulated and real data The signal set tonsisted of pure tones and a hop code

used in active sonar. L...

The results are in agreement with the examples reviewed which concluded that no

pocessing gain is derived from bispectral analysis. It is shown that the resolution for direct

methods using no formal cumulant construction (for zero mean strictly stationary random

processes cumulants up to third order are equal to moments up to third order) was far superior

to that of indirect metds containing third order cumulam sequences. Simulated and real tests

indicate no significat improvement in bispectral over power spectral analysis beeaus the echoed

signals exhibited a symmetric pdf (skewness approximately zero) similar to Gaussian noise. In

thoy the blspectnam canmot differentiate between nonGaussin symmetric signals and Gaussian

or non-Gaussian symmetric noise, all of which are equally suppmssed. Noise only suppression
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occurs when the signals echoed or radiated are zero-mean non-Gaussimn with non-zer skewnes

(nw symmery evide), and the noise is zero-mean Gaussian or non-Gaussian with zero skewness

(Symmetry evident).

The efficacy of signal d in undewater aoustics using polyspectral medtods is

examined in the ligh of currnt research into nonmationary HOS with fzai directions for study
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CHAPTER 1

DITRODUCTION

Power spectal information is that whinch is present in the second-order statistics or

autcorelalondomain which suffices for the complete statistical description of a Gaussian

process of known mean. Phas infonnatian is supprsed in the autocorrelation domain sinm

the signal in question is represented as a superposition of statistically wicorrelated harmonic

components Situatios may exist, however, when the mimnium-phase assumptions of second-

order statistics do not suffice, i.e., non-minimum phms infonnaton needs to be extracted as

well as devlatious from Gausslanity and degrees of n-lnails For thes cases higher-

order specws such a the bispectum and trispecum we required.

Higher order spectr or polyspectra am the (A-I) dimensional Fourier transfornni of nith

order cutnulant semees. 6 Cumulants are phase sensitive highe order statistics which am

useftb in the analysis and description of non-Gaussian processes. They display the degree of

higher order eomulation presen in a random series as well as providing a measure of the

deviation of a pmrticular distribution from Gaussianty.

In general, the three main motivations behind the use of polyspectra in signal

processing amu: (1) Gaussian noise suppression for processes of unktnown spectrinm

haateristics in detection, parameter estimation, and classification pioblems, (2) phase and

magnitude response Precnsrcto of signals; and (3) detection and chrctrztion of time

series nliarte.The first motivation will be the focus of this paper and- is based on the

property that for Gaussian processes only, ali higher-order specws of order greater than two amu

idencaly iuMIS This leads to the conjecture that for applications where the observed

waveform consists of a no-asinsignal with non-zer skewness in additive Gaussian noise
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or a non-Gausian signal with not-zero skewness in non-Gaussian noise with zero skewness,

certain advantages may exist in signal detection in polyspectra domains.2

Higher-order spectra (polyspectra) defined in terms of the higher-order moments or

cumlars of a signal (see Appendix B for definition of cumulants and joint cumulants) can be

used to examine more information contained in a stochastic non-Gaussian or detenninistic

signal than is contained in its autcoe (power spectrum). From statistical theory we

know that all joint cumulants higher than the second order vanish for a multivanate normal

prOcens15 The immediate impact of this is that all spectra of order higher than two vanish for

a Gaussian procesL Thus, higher-order spect-a appear useful in d non-Gaussian

processes embedded in Gaussian noise. Moreover, polyspectra retain phase and give a

measure of the phase correlation between components whose frequencies sum to zero. Such

phase relations could occur due to nonlinearities arising from modulation effects of active

sonar signals or from the output of a quadratic system that contains power contributions at

frequencies which are -ums or differences of pairs of input frequencies, a phenomenon known

as Quadratic Phase Coupling (QPC).15 QPC could result from the interaction of ship systems

giving rise to tonals (harmonics) above broadband noise in the passive sonar case. As an

example of this consider the frequency triple (fl,f2,f3=fl+f2). Quadratic coupling would result

in a power cnribution at f the phase at f3 was the sum of the phases at fl and M The

bispectrum identifies quadratic nonlinearities of this type while the power spectrum is

completely insensitive to such phase relations.

There are basically two ways that can be used to estimate higher-order spca when a

finite set of observation measurements is available, conventional (Fourier or nonparame-ic)

methods aid the parametc approwh based on Auwtregpudve (AR), Moving Average (MA),

and Autoregessive Moving Average (ARMA) models. Conventional approaches can be
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impemented either by direct or indirect methods. The dire method refers to direct generation

of the DFT coefficients required for the ensemble average of the bispectral triple product from

the input data. It does no require using the 2-D FF. The indirect method refers to the

generation of cumulants from the input data which are subsequently double Fourier

transformed to give the bispectrum. It comes from the general definition of polyspectra being

(n- I) dimensional Fourier transforms of nth order cumulam functions. In the case of bispectra,

this reduces to a 2-D Fourier transform of a third order cumulant function. (See sections 2.1.1

and 2.12.). The direct method as a natural starting point for polyspectra analysis is the main

focus of this paper with the conventional indirect method and parametric techniques briefly

examined for comparison purposes.

Few applications of polyspectr have arisen due to the voluminous nature of the data

requirements with the accompanying compuaonal burden. Also, statisical difficultes

coupled with the lack of a physical under dab inrpretation have compounded the

For our purposes we will only be concerned with the fact that if a time series has a

statistically significant bispectrum, the generating process is non-Gaussian with a sufficient

degree of skewness as to be prominent in a Gaussian or non-Gaussian symmetric probability

density function (pdf background which will result in a vanishing bicoherence. (See Appendix

A). Bicoherence analysis results when the bispectnm shows a sensitivity to the amplitudes of

the involved spectral components 5 It has been shown that, for even incoherent signals, the

value of the bispectnim can be significant if averaging is performed on too small a number of

records. Since the bispectral estimator can be misleading, normalized bispectrums or

bicoherences ae the preferred choice of analysts as a function of processing capabilities.

Bicoherence, however, is very sensitive to SNR because of the normalization. This is
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observed when. for perfectly coherent signals, the bicoherence is not one due to the input

noise. If the SNR is low, the value of the bicoherence estimated with a relatively small

number of data records. e.g., K < 50, can be insignificanL To recover significant value the

number of data records must be increased (up to several hundred) at least if the signal is

stationary over a sufficiently long time interval.5 This can prove prohibitive which is the

reason why bispectral sensitivity to amplitudes of spectral components a tolerated. Moreover,

what is an undesirable feature for some is advantageous for others as this same amplitude

sensitivity is the main reason that uncoupled harmonics are prominent above noise in the

bispectrum. The real problem is why aren't such signals more prominent given the

"vanishing" nature of bispectrns andor bicoherences to Gaussian processes. The liUtert

would seem to imply that a processing pin is inherent in the application of polyspect•l

methods. Me answer is that theory is seldom realized in practice for the reasons cited by

Lagoutte in Reference 5 and reported here. It is interesting to note Lagoute's conclusion," it

can be said that the use of bispectrum analysis can be subject to wrong

Bicoherence can only be used if the waves are not embedded in noise." This author has not

seen too many physical processes over the course of his career that are not embedded in

significant noise of some type other than those idealized results which invariably turn up in

journal articles but, strangly enough, are never applied to actual physical systems.

' Our main interest in the use of polyspectra is the realization of an improvement

relative to second order methods in the suppression of additive Gaussian noise for signal

detection problems arising in underwater acoustics.22 Non-Gaussian signal processes occur for

active sonar when the reflecting target has only a few dominating scatterers. The noise in such

applications is frequently Gaussian, so that the detection problem is that of detecting a non-

Gaussian signal embedded in additive Gaussian noise.
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Detection problems related to non-Gaussian noise2 2 include sonars operating under ice

where noise due to ice-cracking, creaking and floe-smashig contribute a component found to

have substantial non-Gaussian behavior. Additionally. active sonars operating under ice near

the surface may encounter a nonm-aussian component due to specular reflection from the

irregular under-ice surface. Another environmental situation which may produce non-Gaussian

noise is shallow-water reverberation. Theoretically, non-Gaussian noise can be equally

suppressed via conventional polyspectral methods if the noise possesses a symmetric pdf, i.e.,

is not highly skewed.2

This paper will address problems related to active sonar as defined in reference 22

when the noise background is reverberation-limited and the scatterers giving rise to the

reverberation are assumed to be statistically independent in their reflecting properties.

Application of the central limit theorem gives rise to a Gaussian process for reverberation

while the return, being primarily due to reflections from a few ranmdom scatters will be

compositely non-Gaussian.

In passive sonar22 the detection of non-Gaussian signals in Gaussian noise occurs

when the background noise is frequenly assumed to be Gaussian and stationary with the

sources such as ship-radiated noise being non-Gaussian. The passive problem is not

cosidered in this paper.

Hi-Spec, a collection of Matlab M-files designed to be used in conjunction with

Matlab developed by the MathWorks,l12 3 is a software package which provides polyspectra

analysis capabilities for various processing applications. 1'2 A brief description of Hi-Spec

routines is give in Appendix A. The routines specifically used for this paper included

"bispec_d" - direct method for bispectrum estimation, "bispeci" - indirect method for

bispectum estimation. "gistat" - detection statistics for Hinich's Gaussianity and linearity
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tests, "qpc.Jen" - generator for quadratically phase-coupled harmonics in noise, "harm-gen" -

generator for harmonics in Gaussian (colored) noise for the harmonic retrieval problem, and

"harmest" - estimator of power spectra harmonics using MUSIC, Eigenvector, Pisarenko, ML

(Capon) and AR methods based on the diagonal slice of the fourth order cumulant with

conventional periodogram also give for comparison purposes.

The routine "qpc..gen" generated the data for Figures C.I-I and C.1-2 in Appendix C

as described in section C.1 DIRECT/INDIRECT COMPARISON FOR SIMULATED

DATA.

The routine "bispec-d" was used to calculate the direct bispectrum for. (1) Figures

C.0-1, C.O-2, and C.0-3 in Appendix C as described in section C.0 POWER

SPECTRUM/BISPECTRUM COMPARISON FOR SIMULATED DATA, (2) Figures C.l-

I and C.1-2 in Appendix C as described in section CA DIRECT/INDIRECT BISPECTRUM

COMPARISON FOR SIMULATED DATA, and (3) Figures C.2-1 and C.2-2 in Appendix C

as described in section C.2 POWER SPECTRUM/BISPECTRUM COMPARISON FOR

REAL DATA.

The routine "bispecj" was used to calculate the indirect bispectrum for Figures C.1-1

and C.1-2 in Appendix C as described in section C.1 DIRECT/INDIRECT COMPARISON

FOR SIMULATED DATA.

The routine "gi-stat" was used as an added, albeit redundant check due to the observed

obvious non-zero nawr of the echoed signal skewness, to verify the zero skewness hypothesis

for the r data as described in section C.2 POWER SPECTRUM/BISPECTRUM

COMPARISON FOR REAL DATA. The use of the "glstat" routine in this context was

more for security than an absolute requirement and, as such, not formally addressed in this

paper. It will suffice to say that "glstat" verified the zero skewness hypothesis in all
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instances which gave de author a warm feeling about the "corectness" of the Hi-Spec

software package. It is worth noting that them are many statistical tests of a less complicated

nature then "glstat" which serve the same purpose, i.e., the comparison of continuous or

binned data where one data set is compared to a known distribution or two equally unknown

data sets are to be compared. See Chi-Square goodness-of-fit and Kolmogorov-Smimov tests

as described in itfrence 52.

The routine "harmgen" was used to generate the harmonics for the higher order

statistical resolution improvement routine "harmest" as reported in section 22.1 Harmonic

Retrieval. The results were briefly addressed for illustrative purposes to make the reader

aware that higher order statistical versions of these routines suffer from the same consmaints

that their lower order counterparts do - namely a high SNR requiremment. This c upled with a

lack of signa skewness caused no discemable difference with second order periodogram

methods.

A condensed version of this paper was published in The U. S. Navy Journa of

Underwater Acoustics, Volume 43, No. 1, January 1993, pp. 201-220, under the title, "Signal

Detection Using the Bispectrum."



CHAPTER 2

A REVIEW OF DETEC117)N RESULTS AS REPORTED IN LITERATURE

This chapter reviews npaaeicand parametric attempts at signal detection in

Gaussian noise using dhe bispectrm. Examples from the literature which address comparison

of power spectral to bispectral methods include the following applications: (1) the

Iduvlficatlon of signals generated by a system of coupled nonlinear differential equations, (2)

radar backacatter processing and target Ietfcioand (3) a statistical treatment of the

detection of narrowband harmonic components resulting in a Receiver Operating Characteristic

(ROC) curve. Tie nonparamr'4c direct and indirect methods are foumally defined along with

cores1pond-In test results which are in agreement with the examples cited in the literature

review. Parametric methods are described including the reasons for neglecting same in this

paper. Harmonic retrieval is briefly discussed in the context of conjectured resolution

enhacemntsdue to applying higher order statistics to standard algorithms. Mhe resolution

section is included to show the extension of the detection problem, lack of signal skewness

compared to noise, to the resolution problem.

2.0. -dn-icto of Signals Generated by a Coupled System of

Non.1mw Differenti Equations

Mbe detectability of signals was examined through experiments in which simulated

sigal were subjected to power-spectral and direct bispectral analysis.' Specifically. signals

rich in harmonic content were generated by solving a system of coupled nonlinear differential

equations and were subsequently contaminated by Gaussian white noise before being subjected

to spectral and bispetra analysis. Mhe effects of start up transients due to initial conditions
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were removed by discarding the firs 2,000 points a the solution was stepped for typically

10,000 steps. ClUacal windowing and segment averaging was applied to the noise caes for

two different noise levels described as low and high. In both instances ensemble averaging

did not produce sufficient reduction of background noise to make the bispectum a

significantly more efficient signal detector than the power spectrum. It was concluded tha the

bispectrum slices taken did not show it to be a very valuable indicator of the existence of

multiple harmonic signals in the presence of Gaussian noise. No signals were observed in the

presence of noise using bispectra when they were not also visible in the power spectra. It was

futher shown that no increase in processing gain is derived from bispectrul analysis even

though it makes use of inter-frequency phase relation data. It was found that reliable detection

required more signal energy in the bispectral case than for spectral detection unless the signal

skewness was larI. The amount of averaging applied to reduce random sampling variations

is proportional to the time bandwidth product. The disadvantage of bispectral analysis varied

directly with the time bandwidth product as results indicated that the bispectral detector was

inferior to both energy and conelation (matched filter) detectors. Dispectra did not appear to

offer any advantage in detectability at low signal-to-noise ratios unless the signal skewness

was Ug

As a caveat it was pointed out1I that the signal bispectrum contained more structure

than the power spectrum, indicating that bispectral analysis of signals may provide useful

additional classification beyond that obtained from energy methods. It was fturter conjectured

that bispectral analysis may be useful in active acoustic detectors in the presence of

reverberation assuming that the acoustic return reflects a localization compared with the

reflectors producing reverberio.
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20.2 Radar Badgacatter Processing and Target Identification

The use of bispectral processing methods for radar backscater processing and target

identification have also been examined 323 In this situation bispectral processing methods were

adapted to the radar signatune analysis problem which resulted in the birange profile, a 2-D

display of target scattering mechanisms in the range domain with the final goal being the

detection and classification of radar signals.

The type of signal processing addressed in this study is based on a specific target

scattering model where the scattered signal is a combination of specular scattering terms from

localized areas on the target and multiple interaction terms. Highe order spectral processirg

of radar signatues, similar to classical spectral analysis of radar data, produces sipatures in

the time domain thai ar related to the geometrical shape of the target. hibs serves as an aid

in target disciminon. A description of this process follows.

Complex natural resonances of radar targets are aspect independent and are used as an

aspect insensitive method for discrminating between targets. No information about the

scattering mechanisms of a radar target is directly evident from the bacisattered frequency

response data. However, this information pertaining to target shape, size and orientation is

present in fequency and can be extracted by examining the target scatterng mechanisms that

are displayed in the Target Impulse Response (TIR). The TIR comes into play since if a plane

wave is transmitted to illuminate a target, then the backacanered field is a function of the

transfer function as seen by the radar, and the range to the target. Accordingly, it is desirable

to change variables from fnequency to time since target scattering features can be recovered

from the impulse response giving the analyst a more intuitive undemanding of the processes

involved by wodkng with time domain signatures instead of frequency domain responses. For

the radar problem the end result becomes a time triple correlation mapped to a range plane via
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die bispectrum where the bispectrum is expressed U an ensemble average of impulse responses

B(rl.r2) = <h(rl),h(r2),h(rl+r2)> whenr h(r) is the impulse response as a function of range.

Defining the birag as such implies that a non-zero bispectral response is the result of

interaction between the responses at ranges rl and r2 which appear as a response at the range

rl+r2. For the bispectrum of real data, this usually takes the form of a clearly evident non-

zero magnitude bispectrum at the ordered pair in range (rlr2) in the principal triangular region

of the bispectnam (see appendix B), and various assorted other ordered pairs in the
con�spding eleven b-spectrum symmetry regions. (See Figure B.2-lb.) These symmetry

regions containing significant non-zero magnitude bispectrums occur at the ordered pairs:

(r2,rl) from symmetry region 2, (-r2,rl+r2) from conjugate symmetry region 3. (-rlrl+r2)

from conjugate symmetry megion 4, (-rl-r2.rl) from symmetry region 5, (-rl-r2,r2) from

symmetry reion 6, (rl,-r2) from conjugate symmetry region 7, (-42,-rl) from conjugate

symmetry region 8, (r2,-r-r:2) from symmetry region 9, (rl,-rl-r2) from symmetry region 10,

(rl+r2,-rl) from conjugate symmetry region II, and finally, (rl+W2,-r2) from conjugat

symmetry region 12. (See Appendix C section C.I figures for an illustration of the twelve

symmetry regions of the bispectrum for real dat.) Furdiermore, the bispectrum at (rlr2) is

non-zero only if the responses at rl and r2 and rl+r2 are correlated. For the bispectrum of

complex data, the non-zero magnitude of the bispectral response corresponding to the

interactions between the responses at ranges rl and r2 still appears at the ordered pair in range

(r01) located in the principal triangular region of the bispectrum as before for the rea data

case. However, because we are now dealing with bispectrums of complex as opposed to real

data, there ame no longer twelve symmetry regions but only one defined by the placement of

the complex conjugate for the third order joint cumulan.233 9 An example of the placement

used In HI-spec is given in Appendix B directly below Figure B.2-3. This corresponds to the
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firm symmetry relation deined for the bispecuum of complex-vahled signals immediatly

fdolowln the example. Formally. this range symmetry for dhe complex cue would only occur

at (rU2rl) in the area designated region 2 in Figure B.2-lb in Appendix B. The noise

suppression capabilities of the bispectum arise from the fac that uncorrelated or low

correlated Gaussian noise of unknown spectra chactedsti (colored or white) does not have

a significan bispecou. Consequently, the motivation for using bispectrums for detection

pupoms becomes dear as, in theory for an infinite number of samples, Gaussian processes

vanish. In practice, however, only a finite number of data samples is available so additive

Gaussian noise is not totally suppressed in the birunge profile. Also, since additive noise may

be only ay Gaussian or non-Gaussian clutter having a non-zero third order moment

(Akewness), total noise supprssion wouldn't occur for even an infinite number of samples.

The obvious conjecture is that the bispectnum might prove a viable alternative to power

spectrum techniques since it retains phase information thereby identifying any type of phase

coupling which might result from the interactions of Mte scatrIng mecnsms This

Information could allow for beetarget detection. The time/ange mapping is discussed next.

In most signal processing problems, the data sequence consists of samples takn from

a time dependent wavefoun. Then the bispectrum, as defined in Appendix B, is a funicon of

two variables in the quency domain. The radar scattering dam sequence, however, is not a

time sedes but recorded in the frequency domain. The triple correlation of this radar

fnrquency domain data is a 2-D profile in the frequency domain with the applied bispectrum

becoming a profile of target scattering signatures in the 2-D time domain which could be

termed a "bi-time.profile of radar targets. This profile can be subsequently expressed as a 2-

D p•of• in range using the standard range equation r = W/2 where r is the range from the

radar t the target, t is the time needed for the signal to papagate W the target and back, and c
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Is the speed ofiUgh This is what is mferr•d to as the birane prflie of fte trge Fomally,

it is a bispectnr display of targe signatures in the 2-D range domain rl and r2 where the term

"rWge" denotes the propagation distance to the trL This process is directly related to the

classical problem of determining dte system impulse response by tkng die inverse Fourier

transform of the system transer function (analogous to the radar system transfer function

coctaining the complex natural resonances of the targets). This resulting time triple correlation

is asbeunty mapped to range to crea the birange profile.

The focus of dte report was on the processing of radar data tested as a time series

using hd hr order spectral analysis tcniques, in paticular, the bispectrum. "he reason for

the rmewed interm in the bispectrum as a general signal processing technique is related to

curreincreaues in processing capabilities as, previously, excessive computational

rWquir nas gave ft promise of limited rewards. Not only are the matematics of the

bispectrum far mome complicated than for other specut analysis techniques but the physical

insight in the tcnique is nrt fully undetood as the main problem rmains the lack of an

Intuitive Interpretaton and unertanding of the bispectral processing of a time series.

BoDh Dirc and Indirect mehods of bispectrum computation were outlined with the

requirement for a lar number of data samples due to tde high variance incurred by both

estimates. It was noted that the estimates could be made smoother if mor data segments were

used at the expense of decreased birange resolution that results from the introduction of

ntatonas problems. Ie main advantage of these methods is the ease of implementation

using FFT algorithms. A variant of these methods was used to generate the birange profiles.

A parametric technique using autoregressive modeling was introduced as an alternative to

classical Fourier tmnsform tecuques The reasons for this stemmed from the resolution of

the estimated profiles being limited by bandwidth and die effects of the window function used.
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Me1 window had a wide mainlobe which fuiter limited resolution.) it was poinsed out dimt

applying a rectangular window to the triple correlation for the bispectrum caused 2-D sidelobes

to appea Walng each range axms It was observed dim with finite set of radar scatteuing data

resolution problems with Fourier techniques ame inevitable. To avoid this problem die

parametric technique was imposed which assumed that the, scattering us a function of

frequency satisfies a model whose parameters ame estimated from dhe measured data. The

birange resolution was no longer limited by the measurement bandwidth as was die case with

Fourier baned processing of finite length data records. The parameteus in question were

au -rgassd (AR) and could be estimated from dhe second or thind order cumulamts of the

measured backscate data sequence. The blruag was dhen computed as dhe triple correlation

of die Inverse Z trunform of die measured backascatter response which becamie die Target

Impulse Response: CI). Hence, die birange was pa-rameter-, -Is by the AR coefficients lThe

limitatlon of parametri modeling arose from die fact that- (1) scatering at frequencies

outside die measurements can not be easily predicted from the measured data due to

dependence on many factors such as dispersion and scatteri ngkreio, and (2) model

parameters ale often estimated usin nonlinear algoiduns and. as such. are sensitive to noise,

in die data. It was noted that improvements in Fourier methods could be achieved if dhe

measured backwacae had a high signal-to-noise ratio coupled with a slowly varying frequency

repIFme0 for die tWge

An AR parametric model where die parameters were estimated using third order

cumulants was devised and tested using experimental radar data The AR burage profiles

wene compared to the, Fourier transfonrm based birange estimates. The results obtained on

modeling scaled model aircraft using the AR-based algorithma were not encouraging in the

sewne that no closely spaced peab in the birange were resolved and liule compatibility
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bispectrwn are onstructed as a function of the number of DFrs over which the bispectnzm is

coherently averaged. Normalized bispectrums, i.e. bicoherences [see (A.2-1) and B.2-10)], are

also considered. The variance of the unnonnalized bispectral estimator becomes a function of

the multiple of the power spectrms at the respective bispectrml frequencies f(j), f(k), and

f(j+k) scaled by the DFT size divided by the number of DFTs averaged. The time series is

assumed to be uncorrelated in time. The coherently averaged estimator of the bispectrum is

shown to be an element of a multivariate complex Wishart distribution with dimension 3,

degrees of freedom coresponding to the number of averaged bispecrums and complex

Gaussian distributed in the asymptotic sense. The bicoherence is determined to produce a

quantity whose asymptotic statistics are more easily calculated. It is pointed out that since the

asymptotic distribution of the bispectal estimator is complex Gaussian. the distribution of the

bicoherence is given by an asymptotically nncentrl chi-square distribution with two degrees

of freedom and a noncentrality parameter which is a function of the skewness of the data in

the time series in question. e.g. if the time series is Gaussian, the skewness function will be

zero for all bispectra frequency pairs and the distribution of the bicoherence (normalized

bispectrum) is centrad ci-square with two degrees of freedom (the noncentrality parametb will

also be zero). For the detection of signals in the presence of additive Gaussian noise, a

theshold is applied to the bicoherence estimate to detect a non-zero bispectrum at a specified

false alarm rate -orresponding to the probability of committing a Type I error (accepting die

alternative hypothesis when the null is true) from the central chi-square distribution. The

derivation of the noncentrality parameter as a function of the skewness of the signal and the

signal-to-noise power ratio for a noncentral chi-square distributed normalized bispectrum

estimate of signal-plus-noise is given in Hinich. 3 1 The probability of detection is then

computed for the normalized bispectrum (bicoherence) from the noncentral chi-square
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distribution as a function of the noncentrality and the threshold parsmeters for the rxmcentral

chi-square distuibution. A similar threshold is derived as a function of the signal-to-noise

power ratios at the ffj), f(k). and fQj+k) bispectral frequencies for the magnitude squared

unnomalzedbispectrumi to calculate the probability of detection from the noncentral chi-i

square distinbution by evaluating the probability that a noncentral chi-square random variable

with a given non-centrality parameter will exceed the normalized bispectrum. threshold which

is, in turn, normnalized by the Aforementioned bispectral frequency signal-to-power ratios.

Simply put, die corucer is how large the normalized bispecurum statistic has to be in order to

confidently reject the "Gaussian noise only" hypothesis in favor of declaring the presence of a

non-Gaussian signal. It is shown" that to operate at a false alarm rate of .001, one would

reject the hypothesis that only noise is present (die normalized bispectrum statistic is central

chi-xaqur distributed rather din noncentral chi-square distributed) for values of die

normalized bispectrum statistic that are 13.8 or larger. The observation is made that since the

mean value of the normalized bispectnim statistic is equal to the noncentrality parameter, it

follows tha the noncentrality paramete must be 13.8 or large to achieve detection at this

false alarm rate.- The critical issues addressed" from a statistical perspective pertain to this

noncntrality parameter, in particular, the several factors which contribute to its value-

skewness (charactefistic of the signal), signal-o-noise ratio (hrceitcof the signal arnd

noise power levels), and finally, die processing chwarcteristics, i~e., DFr size number of DF~rs

used in bispectrum averaging.

The conclusions reached" can be summarized as follows. If a signal has a non-zero

skewness fuinction, a tradeoff exists between signal-to-noise ratio and processing parameters

which will determine if the non-zero skewness is sufficiently large to result insa noncentrality

parameter which will allow its detection at a given fase alarm rate. For small values of the
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skewness function, the processing paramuters and signal-to-noise ratios have to be such that

their product remains large enough to produce a sufficiemly large noncentrality parameter for

deaectil [The noncentrality parameter has a linear dependence on the number of averages

and an approximately cubic dependence on signal-to-noise ratio (for low SNR).j The

implication here is that if the signal-to-noise ratio decreases by a factor of 2 (3 dB). then it is

necessary to increase the number of averages by a factor of 8 in order to retain the same level

of detecability dictating a certain degree of flexibility for real time algorithmic realizations

which may not be feasible. By far. it is clear that the undedying concern remains signal

skewness as Wison;9 demmuaes the essential relationship between signa characterstics,

noise ccs, and processitg parameters which define the detectio performance of the

bispectrum. It is shown that given a skewness function, the processing parameters necessary

to achieve detection as a funAmcon of signal-to-noise ratio can be determined. Broadband

detction in which the detection staistic is based on bispectrum values over the entre pnncipal

domain is discussed in Hinich31 as opposed to narrowbmnd detection at a single poit in the

A comparison of the detection performance of both the normalized and unormalized

bispectrum to the power spectrum for detecting harmonics in Gaussim noise is shown in the

Figure 2.0-1 from Wilsn29 This figure is based on three harmonics having the same signal-

to-noise ratio. The number of averages used was 10 necessitating an approximation to the

asymptotic statistics used to produce the results since the expression for the exact disibution

has not been derived. The unnormalized bispectrum (B) performs betr than the power

spectrum (PS) while the normalized bispectrum (NB) performs worse. The best that can be

said about bispectral estimation based upon this ROC (Receiver Operating c)

curve is that it is no better than approximately 2-2.5 dB over power spectral techniqes in the
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signal-to-noise ratio range of -0 to 0 dB with a normalized version up to 8 dB worse onthe

high end. It is worth noting that Wilson assumed that all of the variables critical to successful

bispectrul processing are optimal, i.e., sufficient signal skewness exists, the noise is Gaussian

or non-Gaussian symmetric, and the processing parameters (DFT length, number of DFrs

averaged, etc.), anm chosen such that detection will result from a sufficiently large noncentrality

parameter for the noncentral chi-square distribution in those cases where the skewness function

is low.

1.0
B

0.6 I - -

0.22 V

N
0.0

-10 8 -6 -4 -2 0 2 4 10

Signal-to-Nise Ratio - dB

Figure 2.0-1 Comparison of Bispectrum and Power Spectrwoa
Narrowband Deteion Performance for PFA = 0.0

2. NONPARAMETRIC METHODS

The methods can be broken down into two classes, direct and indirect The methods

have the advantage of being straight forward allowing the introduction of polyspectral

processing from a computational standpoint which is compatible t the well known classical

Discrete Fourier Transform (DFC) implementation of the power spectrum.
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In practice, conventional bispectrum estimators5 use a finite set of observation

measurements. However, the caution is that limitations on the statistical varance of the

estimates, computer time and memory requirements present severe implementation problems.

In general, the direct and indirect methods for blspectrnm estimation give different statistical

estimates. These estimates, however, are asymptotically unbiased and consistent and have

distributions that tend to be complex Gaussian. 16 Conventional estimators have high variance

and thus require a large number of records to obtain smooth bispectral estimates. Increasing

the number of records or segments causes the tradeoff of increased computation time and can

present additional problems with nonstationanties. Frequency domain averaging over small

rectangles to reduce variance has the unwanted side effect of increasing bias as well as

computation time. As per power spectrum computations, the effective number of records can

be increased by overlapping for short data records.15

2.1.1 Direct Method

This class of conventional estimator is useful for the generation of moment spectra

using FFT algorithms and is defined in Nikias16 as follows.

Let {X(I),X(2),...,X(N)) be the available set of observations for bispectrnm estimation.

Assume that fs is the sampling ftquency and A fIN, is the required spacing between

fequency samples in the bispectnzm domain along horizontal or vertical directions. Ths N,

is the total number of frequency samples.

1. Segment the data into K segments of M samples each, that is N = KM, and subtract

the averge value of each segment. If necessary, add zeros at each segment to obtain

a convenien gth M for the FF1.
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2. Assuming tat xz(k),k-O,1,2...,M-1I 1 da d of n fi). generat t

DFr coefficients

YOM) I2 E x®*(k)e*(-J2•kUM), I Oul,...,A/2

M~ k"
J 12".VK

(2.1.1-1)

3. In general, l -.M x No whee M, is a positive in•eger (assumed odd number),

that is, M, - 21 I. Since M isevenadM, is odd. wecompromise an the

value of N (dosest integer). Generale.

JV (•.,,J..., ,, , I A

X~ IgE ...

(2.1.1-2)

* Yo 141,4.) ... Y*(),+k.-)

forg = 1,,.... For example, in the special case of th bispecrum where no

avenraging is perform4edat is, M, - 1, L, O. we have the triple product

0-I )-2 1) - ALY(*OQ 1 ) " 0 0X, Y~(**A,+12) (2.1.1-3)
A2

Flquation (2.1.1-2) gives the user the option of performing averaging over neighboring

frequencies to reduce the bispectrun estimation variance.60 The number of adjacent

frequencie sover which this averaging is to be performed is determined by the
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parumeter M1, 2L÷ 1 as M, must always be odd so di thate number of points in both

directions kand Va) parallel to the bispectrum axes will have a midpoint or median

that will contain the averaged value from both directions as given in equation (2.1.1-

2). For LI .0, M1 .1 and we have no frequency averaging with equation (2.1.1-3)

resulting Mid M-UMxNoNo. For L1-1, MI=3 and equation (2.1.1-2) would reflect

frequency averaging over three adjacent frequency points along both axes of the

spectrum with MtxNo 3N siM with the DFT performed over M= 3N points for

each segment. Thus, the desired number of frequency samples is attained as

qMIM -No. At the outset of using the direct method we specify NO which is typically

some convenient value for FFr computation. If we also have the fequency averaging

option available to us then we can specify a value for MN defining our averaging

interval kngt along both bispectnum axes. This changes our ornginal value of No

which now becomes Nfm, i•aM, which is our new or effective value of N.

reflecting the frequency averaging, i.e., effective N. < original N.. Since M, is even

and N is odd, the new value of No is usually not an integer. We compromise by

choosing the closest integer to it which is used in the calculation of the scaling

parameter for equation (2.1.1-2). The averaging operation does indeed reduce the

variance but it may also introduce bis This brute font frequency averaging

operation is implemented in Hi-Spec's direct bispectunm estimation routine "bispec-d"'

via a 2-D convolution of a fequency domain smoothing window with an averaged

bschover K segments (records) which is defined ne=L
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4. The momem specum of the given data is the average over dIte K sCMeMs

= • M•(c 1 ,...•,) (2.1.1-4)

whl G, = (2:fJNo),r

An optimal frequency domain moodt window in ft mean squae error sense (MSE), t

Rao-Gabr window 14 which optimizes wadeoff between variance reduction and bias

inoductio is offenrd as a Hi-Spec option. The Hi-Spec window implmn.tation is defirned

as follows:1

1. Te parnmesr wind specifies ft fiuPency-domain smoothin

window. If wind is a scalar, die Rao-Gabr window of klngth wind will

be use& This window is dend by,14

W(uun) . A - 2+ (an)aG

when N is half die FFHr lngth, it, and G is the s of points, (m, a),

sisft dt enipu

=2 + X2 + M
(,p/t12)?

2. A unity value for wind results i no windowing.

3. If wind <= 0, the default value of 5 will be used.
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4. If wind is a vector, it is assumed to specify a I-D window from which

a 2-D window is computed, W(mn) = wm)w(n)w(m+n).

5. If wind is a 2-D matrix, it is assumed to specify the 2-D smoother directly.

The net effect of this windowing procedure for teps I and 3 is that all of the poims G, the

shaded hexagona region in Figure 2.1.1-1 from Rao14 Cmprising the 12 symmetry regions of

the bispectrum (see Apendix B) bounded by the ellipse ar G'. ar windowed where G, is

the ellips area

(11 6 4 ): 2,÷n z + 2 + 
•= ,2, 3 9 5 4

G is the shaded hexagonal am

(mn): Iml + iIlI5I + l4l <- W ),

sodG<G 1.

The optimal Rao-Gabr window reflects the minumization of die MSE consistng of the variance

of the bispectrl estimate plus the square of Its bi•a. TMs weight function Is actuaily m

expression contained in the variance of the estimate and is shown to be smaller than any other

bispectal weight fumjon. therby mi*r thej 4
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JIgure M..1-1 Rao-Gabr Window Bounds

MA1.1 Tedt Resuts

As descibed in Appendx C synthetic signals at vazying signa-o-noise =dtos *wez

gemratd to exeris fth dio=c bispectu agozithn. Result for synfthec signals embed~de

in Gaussia white noise indiate no signfican improvenmen in bispectal analysis ove power

spetra analysis iberes for fthis s ftha h signal siulatd exhibted a symmetrc pdf
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-aw u px 0) whichi& maeit difficult for the alprdun to differentiate between Dwo-

Gaussia symnieuic sigal mid nonatn- ans~m symmevlc noise Bodi of tdus ame equally

mwmued a the bade asumpionsd~ in mgard to bisectral analysis weib thatde opgals am

non-GmulmiIaO-mem With nOD-ZeOO sewness iLe. exhibit nan.-syuumetry, mnd that the

noise is zo-memn Gaussian or no-Guaussan symmetric.

Real active sonar field data was pincessed with similar fesdis to the simulated data for

similar masons, i~e.. the projected signals used for pinging exhibit symmetric pdfs which were

unpeubtbed upon, bWn ---tdn fiom a targeu

In summmy, the results indicate tho bispectral techuniques which su~ppess Gaussian (or

sao-Gmulm- symmetdc pd0 nois suawe fium a lack of signal skewness which precludes

my discemnaie impinvement over power detection methods (see section C-2 of Appendix Q)

M.12 lud~rect Mhdo

IWB class of coventionial estimator is based on the 2-D FFT of a windowed third

ceder Csmuilut tlaction mid Ii defined in Nlklas 6 as foMoM

Let (J( 2),.."(h)J be given data set. Then we have the following.

1. Segmelntodie dt n rmords of isampleseacb dithml&N = lI.

2. Subtract the average value of each record.

3. Assuming that (zX'(k)lk . O,1,..,M-1) is the data set per segment I - 1,

2,.... jr. obtain estimates of fth higher-order moments

4. Average over dl segments

S. Gemwiate the di-ceder cumulant sequenc e(1r.a,) it is a function of
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'3X 23. 1.2,...A (2.1.2-1)

S, USXtO-TP...-9-T -I).

S2  mon= - I. M - 1 - -M 1 - Tr9...,M - I

*:(TrT .. i - ~(2.12-2)

X ,9" - 1.

MOineig froM oMWe mmd ID na (we~ RomMiiIj S fAx eneral relianinhip).

However fbi a zem-mem ;pm ceu we hav

e;'(i) -

6. Generat dhe highe-Order spocun esftma

L L

t~u- w*.--L(2-.12-4)

Mhem LcM - 1uI md ITV.T, ) is a window function. Inasad of a cumnulmt

"uCcuin ak momen m aect can be gmenead by "cation (2.1.24). if we subidlu fth

cumuluvs by momm emamame give by equtazlu (2 12-2).
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lit~ I ml dlu onc.a window fiunction should sad*f Uth sYmmetry PRupetties Of

higher-order moments or CUMUlWAns. They shoul also be zelo outid ft regio of

uppon of estimaled cumulam nta d have nosutptve Fouuie rusfumms. A clas of

fiuctio that sabtisfesthe conmaaints is dit following.

wheom

D(w)u 9 4T)uzp(-JOT :j O f~r fhai.

Identity (2.1.2-5) allows a recoamutiction of window functions for higher-order specCUM

eatiniaton using standaid oCift-dmeAsOrAl (1 .4 windows. Howeer, not all I - d

windows satsfy constusit DQw~ 0 for alle. Two windows with good perftmance in

emma of bias and varianc mimltzatioua are (see NIkiasl 5 and eferencs therein):

do ( L) (2.1.2-6)

and
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1-6 ,Il

,v(r 21 I - il-ciL (2.1.2-7)

0, ITi >L

MTw first window achieves a bias dtM is about 18 percent usaller than that of the second

(Parm) window. However, the fit window produces vaiance tha is about 26 percent Iar

hm that of Parzen window. Equation (2.1.2-7) is applied in HI-Spec to minimize die

variance.

2.1.21 Tet Resuts

Conv-ioal tndiect bspecta analysis employing 2-D FFTs of higher orler

cumnulas were examined for comparison with direct methods with the result that resolution

was fr superior using the direct algoddsn (se sectm C.I of Appendix C). The inability of

the indirect bispectnum to: (1) molve quadraic phase coupled components similady to the

direct biecum; and. (2) suppess unoped sinusod mixed with coupled sinusoids; caused

questions to be rid as to its effectivenem for noise sprion (unup*d sinsoids sloud l

look like U u- m symmetri pdf now to te bispecIrnm). Thus, indirewt bispecta

comparisn to power spectra was dropped pending a more detailed exuation of te theory

and imple metatn of conventimal indirect bspet mehods. (See section CA

DIRECT/INDIRECT DISPECrUM COMPARISON FOR SIMULATED DATA.)
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L2 PARAMETRIC METHODS

An alemative approach to Fourier based methods for the interpretation of time series

data is the comntnrction of white noise driven linear parametric models from the underlying

physical pocess. The motivations for this are threefold: (1) to recover phase infonnation

accurately, (2) to increase the resolution capability of an estimator involving closely spaced

pub in t bispectunm domain, and (3) to increase bispectrum fidelity in the situations where

noG processes are actually parametric or may be approximsa by parametic

models.15 These methods typically suffer in low sigal-to-noise ratio environments and

demand a cerain amount of apdori knowledge which in't always readily available in practice.

Parametric methods for higher-order spectum estimation ae described in section 7.4

of Nikias. 16 MA, noncausal JR, and ARMA methods ae discussed espectively in relation to

a noamnlmum-phase system identification problem which stated amply s, given only a finite

length of data. it is required to estimate the bispectrnm of the underlying discrete random

process via parametric modeling of its third moments. 15 For example, the MA method

requires the estimation of the coefficients of the MA process via a typical second-order method

to reflect the -autncorrlation stzcture of the data. This apuio knowledge is then applied to

the estimation process with the end result eitng a fine tuning to the coarse estimate made via

the second-order process to improve resolution. A typical example of this in Hi-Spec is the

"*qpc-too program defined under quadratic phase coupling in section A.0 of Appendix A.27

This, program uses a "third-order recursion" to estimate the bispectrum as a functiom of the AR

model order which should be greater than the number of spectral lines, in particular, closely

spaced spectral lines The motivation for such parametric techniques is to (1) more accurately

estimate bispectra of an AR process, and (2) resolve closely spaced peaks in the bispectruim or

detect the presence or absence of quadratic phase coupling at frequency pairs in close
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Proximity to each other. The conjur is made thau. just as AR. ARMA models offer high

resolution capabilities as alterniatives to convemional power spectrum melthds, their bispectral

comiterparts can be expected to offer simila high resolution capabilities compared to

conventional direct or indirect bispectral estimatomrs. Comparison examples are given in

Raghuveer.

Them appears to be some diffence of opinion in the literatme concerning the efficacy

of assuming that a given time series can be described by a low order AR or ARMA model as

reported in Thomson26 which details the authors' experience in analyzing many different time

series models from scientific and engineering problems with the statemem that "neither of us

has yet seen an example which could reasonably be described by an autoregressive modeL"

This statement is later qualified by the admission that. while stating that such examples may

existg th pbability of ralizing one appea to be so low that "starting with tle assumption

that a given time series can be describod by a low-order AR or ARMA model is a prescription

for trouble." This is not the reason for neglecting parametric bispectral estimators in this paper

as much as the requirement for the minimization of apriori knowledge in regard to bispectral

signal detection versus second-order statistics power spectrum techniques. i.e., the main focus

here is coarse as opposed to fine tuning although some alternative methods employing high-

order statistics for resolution improvement will be listed in section 2.2.1.

2..1 Harmonic Retrieval Test Results

As an adjunct to the problems encountered in bispecual signal detection due to the

lack of echo or radiated signal skewness compared to noise contributions having negligible

skewness, frequency resolution tests possible using the Hi-Spec routine "hazm-est" were

performed using signals gnermed by "hazm..gen" (see Appendix A). The "harmest" routine
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gives an estimation of the freqencies of rMAl harmonics in noise with companison to a

conventioal. perlodogrun. Tbe estiaton is given using the MUSIC, Elgenvector, Pisarenko,

ML (Capon) and AR methods based on the diagonal slice of fourth-order cumulanis. No

impovemcnt was noted over npametric FFr-band direct, bispectral algorithms as a EFFr

bispectral. slice exhibited the same peak to peak response as the diagonal fourth-order cumulant

sdice. Moreover, for low signal-to-noise ratio cuses, these higher-Order statistical itsolution

lmpmvmentmethods deteriorated significantly in comparison to the classic penodogram - a

problem common to thir second order counterparts.

It is noted that coare adjustment (long range detection) as opposed to fin (target

classification) is the main focus of this paper. It was the author's hintn to call attention to the

fact that higher-Order methods are no resolution panacea. Lacki of signal skewness inhibits any

proapgation gain as the signal is suppressed equally with the noise Lack of sufficient SNR

inhibits mny resolution -mpmVemenL The latte is not a new resulL 7he fonrm verifies the

examples fium the liteature review and the test performed for this paper as reported in

Appendix C.
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CHAPTER 3

CONCLUSIONS4FTURE WORK

This chapter examines the efficacy of signal detection in underwater acoustics using

polyspectral methods in the light of current research into nonstationary HOS with future

di•ctons for study indicated.

3.0 GENERAL CONCLUSION

The theme throughout this paper is that the Criical parameter in relation to the third

order cumulant spectrum (bispectrum) as defined in equation (BI.-5) successfully realizing any

type of propgation gin over the second order cumulant spectrum (power spectrum) as

defined in equation (BD-3) is the signal skewness as defined in equation (B.1-6). Preliminary

results, pending a more detailed examination of simulated/rea data, indicate that if the echoed

(active) or radiated (passive) signal does not exhibit a degree of moderate skewness which

remains to be quantified, but as a rule of thumb approximately .5 where I indicates a highly

skewed distribution, the probability that HOS signal processing tcati will realize a

significant detection improvement over second order methods appears to be low. This is borne

out by observing that a time series representing a mixture of quadratically phase coupled

sinusoids and uncoupled simnsoids exhibits a moderate skewness measure while a similar series

rep esenlingonly uncoupled sinusoids does not, i.e., suppression of the uncoupled sinusoids is

realized in the former case while there is no difference between uncoupled simnsoids and

Gaussian or non-Gaussian symmetric noise in the latter case.
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3.1 NONSTATIONARY HIGHER.ORDER SPECTRA

Success in the area of nonstationory higher order spectral estimators resulting in a

claimed 3 dB detection performance improvement under realistic conditions when compared to

the stationary power spectrum has been reported in W'lson. In this report the detection

performance of diffent types of higher order spectra are discussed for a variety of signals.

The introduction of what the authors refer to as a "new type of higher order spectra called

nhigher order specta" is made with the distinction that these nonstationary higher

order spectra are not stationary higher order spectra representatio of nonstationary processes

but rather are different spectra which contain the stationary higher order specmt as a subset of

their domain. It is shown quantitatively through theoretical predictions and simulations tham

these spectra perform better at detecting nonaionary signals than do the traditional stationary

spectra. The detection performance of the bispectrum is examined in compadson to the power

spectrum. The motivation for the introduction of this new class of spectra is the detection of

otonary signals such as harmonically related narowband components of finite duration

transients. A funmional approach is usedP to define the stationary higher order spectra or

polyspectm and a statistical approach is used to define the nonstationary higher order spectra

or cumulant spectra. The estimation of higher order spectra are discussed from both stationary

and nonstatiomy perspectives.

The stationary functional approach defines a process with orthogonal increments based

on the classical derivation as defined on page 32 of Priestly.5 The nonstationary statistical

approach assumes a vector valued discrete tine series whose nth order cumulant exists and is

finite. Then the nth order discrete Fourier transform of the cumulant exists and an nth order

cumulant spectral density function is subsequently defined as the nth order discrete Fourier

transform of.the cumulant function. The key here is that no assumption of stationarity has
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been made. For the estimation of nonstationary higher order spectra the result that the

cumulat of the finite Fourier transforms is proportional to the nth order polyspectal density

function plus lower order terms is extended to being proportional to the xth order cumulant

spectral density function (defined above) plus lower order terms. The observation is made

that, for stationary processes, the cumulant spectrum is zero except in the domain for which

the sum of all flequency components are zero. Thus, within this domain the cmulamnt

spectrum is equal to the classical polyspec• m defined by the stationary functional approacl

(This domain is the dark shaded tiangular region in the block labeled "I" in the first quadrant

of Figure B.2-2 entitled, Fundametal Domain of the Discrete TMme Bispecirum from

Section B2. The light shaded triangular region adjacent to this domain becomes a region

where non-zero values indicate nonstationarity.)

3.11 Condruom

TMe bispectral results have previously been discussed in this paper (see Section 2.0).

The message of the statistical approach taken in Wilson is that blindly computing

polyspectra is folly without taking the time to understand the underlying statistics of the

processes involved which necessitates a certain degree of statistical prepocessin prior to

attmpting any type of polyspectral analysis. Me nonstationary statistical approach used in the

report to define cumulam spectral density functions lends itself to a better undertding of the

statistics involved in polyspectral processing and is an example of the multidimansonl

statistical basis used for trispectrum (kurtosis) computations that will be addressed in section

3.2.
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3.1.2 FuRm Work

Further examination is recommended to better understand the nuances between

stationary and nontataionary higher order spectra computations from both algonthmic and

inteptive viewpoints as a function of the underlyg statistics (ral and assumed) of the

processes involved.

3.2 TRISPECThUM

A natural extension to the bispectnum is the examination of fourth-order statistics

(kurosis) in reference to detennining the degree of success for signal detection in the

utasfm (tispectml) domains.3O Work is specifically being directed toward computing the

statistics for the trispectnam similar to that for the ec umI-I over the region of support in

the first octant for tispea computations. i.e., the principal domain of the tdspectrnm for

stationary continuous time processes which is a biangular cone in the positive ocran*-the

three sides of this cone being the plae formed by the intersections of three of the

trispeeMtm's symmer planes.3

As defined in (B.2-8) the uispectrum is the fourth order cumulant spectrum of a

random process. The motivation for investigating the trispectrum as described further in Dalle

MoNWe6 is tha bispectml tests don't serve as complete tests for the rejection of Gaussianity

and linearity hypotheses. Although impractical, a complete test based on higher order spectra

would involve all possible polyspectra as non-Gaussian processes may exist which have zero

bispectral values and in num zero skewness measure over the complete principal domain. It is

observed that since most non-Gaussian processes have non-zeo high order cumulants, it is

unlikely that a process would have both its skewness and kurtosis functions identically equal to

zero over the entire pincipal domain. Therefore, just as additional statistical goodness-of-fit
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eIS S uem strnger cas0es fbr aKcFwe ekxIejectcn of hypotheses. bispectral and trispectral

based tess together make a stronger cut for the rejection of the null hypothesis of

Gauslianity. Similarly, the constancy of the skewness function is not always a pood indicator

for a linear model. Thus, the uispectnhn presents a more powerful tool for the analysis of

non-linear and non,-aussan time series. For the trispectrmm, the suare of the average

kunosis fnic i m becomes the tes for Gaussianity 3 6 The symmetries which need to be

cnsidered In order to define the contiuous and discrete time principal domains of the

trispectrum along with the description of the wedge-shaped hyperplane cone in the frequency

triple (flr2A3) which forms the continuous time principal domain ae given in Dale Mole.36

This pyramid shaped wedge is defined explicitly for band limited processe The principal

domain of the trispectum for a discmte time band limited process is derived in a similar

mmmane to th bispectnun's principal domain. Sampling at the Nyquist frequency results in the

discrete time principal domain being a pyramid with a triangular bae that is larger than e

support. set for the conitinuous time, band limited trspctrMM 6

Kurtosis estimation has also been extensively addressed.3848 The occuience of non-

Gaussian signals in underwater acoustics due to multipath and modulation effects is the main

motivation hemr siusoidal and nanowband Gaussian signals which, when propagated

through fading or multipah environments, ae received as nnm-Gaussian in terms of the

frequency domain kurosus estimate3 8 The results are applicable to both active and passive

sonar with the active case conjectued to be non-Gaussian (skewness at the reumns) due to

modulation effects. Resul have suggested the possibility of detecting non-Gaussian signals

via kutosis estimation at lower signal-to-noise ratios than the power spectrum method.

For under ice data the non-o ussian signals are due to ice movement which produced

tramsient and modulated signals in the passive case.38 (If, in fact, sufficient skewness is
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observed at the muom for the active cae then third order statistics should generally

discrimiae between non-Gaus i and Gaussia gnalt49) Kunrois is defined to be the

ratio of a fourth order central momen to the square of a second order central moment It has

been shown to be a locally opuinum detection statistic under certain conditions and is extended

in the frequecy domain to the detection of ouliers f•om an otherwise Gaussian sample - the

outliers being equivalent to the randomly occurring signal that is to be detected.

Based on the analyses of real underwater acoustics data, condition exist under which

frequency domain kunosis estimation indicates the presence of randomly occurring signals.39

For a Gumian distributim, kutosis will have a value of around 3 within some bound as a

function of the number of samples. For randomly occurring signals that produce non-Gaussian

disributom, the kuross estimate can be less than or much greater than 3. A model for the

received data which contained the effects of amplitUde and phase fluctuation of the signal

along with modulation effecs was used to evaluate the kurtouis estimates in Dwyer.39 The

frxeuency domain kurosis estimation was computed and shown to have significantly high

val.es even for small signal-o-oise ratio cau surpassing the averaged power spectrum

estimation in some instances due to its sensitivity to the pdf of the signal. Results from

Dwyer3 suggest that for randomly occurring signals, e.g., a transient or a modulated signal

over long integration times, the frequency domain kurtosis estimate may be a betr detection

statistic that the power spectrum estimate. For fading environments which frequently occur in

underwater acoustics, the kurtosis estimates are significantly enhanced.

The utility of the fourth order spectrum for the classification of uansient signals in

passive sonar and resonances in active sonar along with the -mputatioa drawbwa is given

in Dwyer.3 The importance of this is obvious because many noise source, i.e., ambient,

rverbe-atin, flow, etc., ame Gamian compared to signals, i.e., sinusoids, asients, active
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sow tuinnsuons, which ame all o-as~n It is demonstrated that the fourth order

spectrum differentiates, between a sum of sinusoids and thus can aid in active soar

clasifcaton.When long pulse trains am traunsitted the return echo as usually modulated

from target dynamics, Doppler spreading, or medium effects. Under these conditions the

spectrum can be severely distorted mnaking detection and classification impossible. Using an

amplitud coded pulse train it as shown that the fourth order spectrum can extract range and

Doppler nfutmato while for the same conditions the spectrum is useless 3 Mwe emphasis Is

on the special case of the fourth order cumnulant defined as kurtosis in (B.l1-6). The treament

here is muliiesoa as a new class of non-Gaussian density fmictloue which represent

meanlngfol signals (Independent data are not required) is introduced with theircorsndg

fourth orde spectra The importance of this work is related to the statistical treatment of

modulated precehses as related to sonar, in particular active sonar

To demonstrate theoretcal results in regard to frequency domain kurtosis estimation an

experiment was conducted" where a sinusoid was modulated by white Gaussian noie,

tramnitted thzo*~ the water and received on an omini-directional hydropliene This was ank

attempt at simulatin the modulation due to target effects which was previously discussd.

Mai second order spectrum (power spectrumn), the spectrum of the special cm of the fourth

order moment, and die spectrum of die special case of the fourth order cumulant (trispectrumi)

derived at the output of a lowpass filter were estimated from the filtered data The experiment

verifidwteoetical results by showing that the second order spectrum could not extract the

sinusoidal frequency, but the respective spectrums of the fourth order moment and cumulant

ciould. It is NfatTi reported" that the analysis of sonar data clearly show modulated or

fluctuating signals. As the range incrae betwen a source and receiver these fluctuating
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CmOpmuMU dominMe ft sigaL Thi flucWadn was tde MUM for the Gassin modulatn

of the rUmsnlned signal in die experiment.

The properties of die special cae of a fourth order cumulant an considered via

Imleenatonusing l-D Fourier tudruafas as opposed to the cmuainlcomplxity

Involved with full 3-D Fourier trasorm realizations of die trlspecnm a defined in (B.2-8).

The derivaon of the Fourier tranafnn of the special case of a burth oda cumulat for the

extraction of range and D pl nmation is Sgivan Dwyerý.1o7 An imnpvemnt on the

order of ta noted in DwYeu4 for the delection of simaoids was similary observed when

comptg fouft order cumulam techniques to the second order spectrum for r

applications. It was demonstrated by simulations that de Fourier umndoa of a special case

of the fourth order ctuulau could exuact range and Doppler infomation with high resolution

even when Oaussim Dodwe was added to the echo while, under the so= conditions, ft

ambiguity function and second order specum! pmcessin showed significant Doppler

spicf bu

IM1 Condcusio

It Is recgnized tht the additioa computa l statistical, and physical meaning

complexity concomitat with Utispectral computations may be the deciding facton In my kind

of a tradoff with a conjectud lmproveimne over polyspectral me•xods of lower order.

3.2= FutVre Work

If special cases of fourth order cumulau spectrm (triupecum) computions can be

realized which minimize the computational effort required for otherwise full trispectrun

realizations then the efforts cited above merit further scrutiny in regard to, at the very least.
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signal clasuification which exploit doe Phase ineractia.. of higher order statistics, and saga

deftctio per se in companison o second aider methods. Abbreviated butous estimation

algoimas might eve presew viable athernatives to third order medhods when signa sewnms

is not a problem. i~e.. stifficlnt. dkwwies exists to employ bispectrul teciuiques This did not

appea Io be the came however for dhe zeal test data examined in this repon as signal

sktewness, specifically lack of same, presented a very real problem in regard to dhe assumptions

nhcessary for successfil application of highe order spectra for detection purposes

Dwyer's work points ouw the fac that power spectruim density (PSD) estimation is

emsentially a second order measur which is not sensitive oo she statistical nature of dhe

signals.'" He offal, am an altenaive, simple fonth arder movememt (kuffiouis) tests in

both frequec mad time am sinpplememw lo PSD estimates arx, In some cames of practical

importance. - maperlar detectio statistics to PSD tedmkiues. It is highy recommended that

the success which dwyer achieved usin frequency domain kurtoins methods be extende to

fth time domain, as he suggests for bosh active aud passive saner scenaflas. Dwyer

emphasizes doat the time domain is nothing mote than a special caut of the freqenc domain

and that analogou results should also hold in the spatial domain where kutouis methods couild

be evaluated in regard to target ange esimaioiL His Post success, for low input signal-to-

noise ratio case (SNRI) using kuooass methods exclusive of any aamulam connotations where

kurwoss methods detected non-Gaussian signals while PSD methods failed to do sois reaso

enough to verify his conjectures in both time and spatial domains.

Following Dwyer's lead. Algorithmus need to be developed which examine both the ra

and imaginary purts of the bput data and optimally select the part or post puocessing of both

puts which gives die best detection statistic as a function of- (1) dhe signal set used, (2) the

target aspect angle, and (3) the kuitouls window length which defines a sliding kunosis
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winow Across in aoustic cycle (ping in active cae, listening imeval in passive cae). The

algoritms need to be examined in rgard W: (1) edge effects msulting fom the windowing

procedure for simulated high and low kurtois signals, specicaily, how edge effects can

maximize detection by dictating whether high or low kuiculs is mught for the detection

statistic; (2) the effect of inducing high or low kurtods to a signal distribution prior to pinin

for the active case, specifically, how such inducement effects the din upon

from a target with particular attention paid to the deree of kurtouis observed post target

dynamics and/or modulation effects; (3) evaluation against simulated test beds containing

realistic targets from widely accepted sonar models as a funcmon of target aspect, platform aid

trW speed. him ra•, depth. position. and sea depth or f•ne tuning pumposes, aid finally, (4)

exhaustive teting against as much ral data as possible to verify or disprove Mwyer's
opjectun specifically, what signals = optmal for kunods as ma effective detectio statistic

in the active cue, mad what kurtosis window leths and post processing ae optimal in the

passive caw. The utity of kbuosis for detection would then have to be compared with

standard second order metmhos in a ROC curve sense for quavification purposes.

It Is worth ning tht wok has begn on a• algorithm, Induced Kuto Statiskti

Amumly Detect (IKSAD),53 o test Dwyer's conjectures with the initial esults being very

encouraging. The algorithm, currently in development is a sliding windwed kurtosis in time

over ma acoustic cydc. Tests were performed using simulated data generated by the Target

Echo, Noise, and Rev be TENAR) Model54 "The results, for a wide selection of

pladorm and target dynamic parmeteur in shallow water scenarios at varying target aspects,

indicate succesaf utarget location as an extrma over the acoustic cycle in almost 80% of the

case without may type of signal post processing for a complete range of SNRi = 15 dB down

to -15 dB in decrments of 5 dB. The algorithm uses no FFs and, as such, is independent of
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dopiW. It merey tug a nomalized simple fourth order momia (kuomis) as a deacdon

statistic ID eXPlOit th active sinal petuabation upon - scan1a 11 u a function of targe

dynamics and/r modulion effects sgesled by Dwyer. In short, it is conceand only with

tie statistical disntibun of the ethoe signal over the target CeMt. Additional simulad

tuts against specific sareg of interest at aspet of intest for both shallow w•ter and dep

ocean scenarias weet pernomed with a high dgte of succes, upwavd of 90%, in the SNRi

top of [15,-i5] dB. All simulated NUN utilized a 15 degme beam at a look angle of 0

deres, ie., directly on the Main response Axis (MRA). Preliminary tess against real data

(static and dynamic) have also been pfoAmed with the algontm spin ch• n in

the S'Ri = [15,15] dB ruage for abbeviated test ses. Mo reld data needs to be analyred to

thotouhy exercise IKSAD over a urial at comprsing the mostu prmb scm. which wit

be eneoumrmed. This is necessay to complee the evaluation of Dwyer's conjectnes.

The TENAR moded, used for the generation of simulated date, predicts the levels

and complex cams-crelations of sound "eard by a multichamel active or passive sonar

system In a specified enviromnme Sound souces may include ambimt noise, target radiae

nois sw self noise, wae echoes and •ebermtion (mrfach voluzu and, bottom). Two

propagation models are offerd: isovelocity (stmight line) with boundary reflections, or

Welbserg's CONGIATS ray tracing7 EgguM ad Goddard developed the sequence of

poSrams for gemring TENAR's simulated mulid el a These propams

ae futr due bed in broad ou•ine form by LUgly with the physical and mathematical

bacground given by ftichouse. 6

This rvereatio capability has now been ingmated into The Sonar Simulation

Toouet (SST)w developed with sponoship from several U. S. Navy sources incl the

Applied Research Lab toy of The Pennsylvania State University (Le Culver, Leon Sibu,
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and Frank Symons, Jr.). SST is a set of computer programs, input files, object-oriented

software components, and software development tools for building and running sonar

simulations. In this context. a "sonar simulation" is a computer-based process for predicting

the response of a sonar system to a particular environment. It produces a digital representation

of the predicted signal in each channel of the sonar receiver's processing pati. This signal

includes random fluctuations with the comr statistical properties. The SST enables a user to

create an "artificial ocean" for. (1) testing new or proposed sonar systems or tactics, (2)

training sonar operators, (3) planning experiments, or (4) validating models of underwater

acoustic phenomena by comparing simulation results with measurements. Inputs to a sonar

simulation include: (1) the characteristics of the ocean itself (sound propagation. sound

scatterng, ambient noise), (2) active targets (scatterers of an active sonar's pulses), (3) passive

targets (noise sources), (4) the sonar transmitter (pulses, beams, trajectory), and (5) the sonar

receiver (beams, trajectory, signal processing, self noise). SST commands available now can

generate reverberation and target echoes for a multichannel active sonar and compute the

signal received by a multichannel passive sonar from any number of maneuvering sources.

Three different methods for generating reverberation are: (1) random point scatterer based, (2)

Gaussian integration, or (3) Monte Carlo integration. A maight line (isovelocity) sound

propagation model is built in; alternatively, the user may choose a propagation model based on

eigenmy files produced by NUWC's Generic Sonar Model (GSM). The latter mechanism

makes all five of GSM's propagation models available to the SST. The scattering function

produced using the Gaussian and Monte Carlo integrations is a time dependent cross spectral

density matrix for reverberation. SST uses this scattering function to produce a multichamel

stochastic time series for subsequent analysis.8
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It is ftmdhorl's intr n us SST, in purdcular SST's abiliy to reflect the cormc

statisical p peties of the received signal for a specified eniemnt Io quantify his work

with IKSADj 3 in relation curntM detection metbds. The final remut wiU be a qualification

of Dwyees conjectus regarding the utility of time domain kurtsis as an effective detection

statisic for both active and passive sonam.
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AAS SOrrWARE DLSCREMFON

A bile desciipdaa of Hi-Spec Roudnes follWs 1.

Cimest Computes sample estimat Of cimulans

blspec...d Direct method for bispecta. eutlmmlma

biapecj Inimbct method for bispectrm esakmala

g1-ata Devectio statstkcs for Hbaidas Guassanlty and Lkieazuy tesM

cumwmi Comp~ut duoretcal (true) cumuulu of AR. MA mad ARMA pm.esm

rp..ild Generats uqe~of 1.14. fadam viailes

armajyn Geneates AlMA syndbedcs

arjrces Estimat AR pumeter usin conmIaton andAW cumulant

mi..est Estiumas MA paramee

arjUaa Esidmas AR pwaumete usin the q-sllce alOdrdun

nmuts Esidmate ARMA pumetes usin the resdual tme so=e method

Us Total leas xare solutio to a sa of linear equaton

qpc..ge Generate quadratically phase-couped hatmonics in =isn

qpcjor Parametri QPC detecton of quadratic phase coupling via the TOR method

Mamxje Geneates harmonics in -Gaussian (colored) nows for the hannonic retreval psoblem
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lmum.. ~ ~ ~ O Eadilo of pow rhqe of barac.ia ufiz MUSIC, Eigeuwecwr,

Pbuawa~o, ML (CRMa) aud AR mmedids bmrd on ft3 diaogoa slice of ft3

fwidlmode cumului wit cowcmional peridogrm aw imgve for

compi pipom

zde-jm Geneate Symbtic for Umcdely estimatio

wde Esimae time-delays om m to sewx ute usig fthu order clue

cumulms

doajera Geneats Synthetic for WOA pmOblm

dom Estimats nun*=r of souzoe md their bearing fium a linea army of senosm

usin MUSIC, egenvecbor, Phsarnko, ML (Capon) mid AR methods baned on

riv.Al Adaptve LP usin doubt lattce ifiter

nivjr Adaptve LP usin mmranaenl flter

lv~cal Computs lnsuumenta variable pocesse

bicWp Estimame impulse aspans via fth bicephium mefthd and compute complex

cepirm of a signa
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mmml Esdmales Fouier Phase uid magmaitde of a spgna usin fte Masuoka-Ulzydi

cun2-est Esdinawe covaniances

cum3.est Estimafts third-cider cmulatis

cum4_.est Estimates fourthi-cider ciunuluits

A.1 DISI'ECTRUM ROUTINES

The bispectrum of the V n r eu, y, is estimated via the direct (IFF-bued) and indirect

methdx. 1' 15

For the direct method, the time-series, y,lis segmented bnio possibly overtapping

records; the mean removed trea each record, and the FFT computed; the bispectruim of the k-

th record is comaputed as

whereXdenotesIthe FFF of due Ath record. The bispectrl estimates ame averaged across

records, and an optional frequaency-domain innoother (Rao-Oabr window)14 is applied.

For the indirect method, the time-series, y. is again segmented into possibly

overlapping recordr. unbiased sample estimates of third-orde cumulants are computed for each

record and the averaged across records; a Pane.n lag window is applied to the estimated

cumulants, and fte bispechum is obtained as the 2-D FF1' of the windowed cusnulaut, function.
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A.2 GAUSSIANIrY TESTS

A decision statistic for Hinich's Gaussianity test is estimated.1 The bispecm is

estimated using the direct method, and a frequency-domain 2-D boxcar smoother is applied.

The power qxecum is estimaied via the direct method, and a boxcar smoother is applied. TMw

bicoherence is then estimad. Mie Gaussimity test (actually zero-skewness test) basically

involves deciding whether or not the estimated bicoherence is ero.

The statistic for the Gaussianity test. S, is a three-elemem vector where sg(l) is the

estimated statistic S. sg(2), is the number of degrees of freedom. p. and the probability of false

alarm, ss(3). is the probability that a 2 rndo vaiable withp degrees of freedom could

have a value larr thim the estimated S in sg(l). If this probability is small. say, 0.05, then

we may reject the hypothesis of zero skewnm at a WFA (or signifcance level) of 0.05.

ThYreforn, f you decide to accept the hypothesis that the data have nomt-zeo kewnsm th

the probability that the data may actually have zeto skewness is Oven by sg(3). Uf WA is

lalre, then the hypohei of zoo skewness canno be easly rejeaed.

Ma normalized bispectum (bicaleren) is defIed as

B.(Wp• - •"a) (A.2-1)

wheo BM(n P0) is the bsectum and S(W) is the power specum. Under the Gaussuanity

(zro skewness) assumption, the e-- -Ud value of Ba(W ,@z) is zero. The aes of Gamuiity

is based on the mean bicodetmce power.
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S - ] IB.Qa,,,,- 12, (A.2-2)

weW the mmaion is pedfmmed over the nn-gdja. regio as defined in HLi 17 TMe

misi S Is 2 disuzibed. with p de•rees of fteedom, where p i a fuhmc of th FFr

lengt* and a msoludon paramenter, cpanhK17 p isappexaroly equal to N21 6M12. wher NV is

the length of the time sneris

A.3 HARMONIC ESTIMATION

t Cdenoe the madagbyamwlag marix. with nrim, C(4 - C41 -j,O,0).

Almo, let C - VSV denote dt me=ee de iodo where s is the dialonal mmix of

egeue,. 1(k), and V is the marix of el•guecsm, v,, k - l,...,au•. Let

Q(.) :-[1,oxp(- j.),...,sp(-j(ma0 -l 1) (A.3-1)

denote the FFF vecor;, and let p denote the dhoe order (dte parnmeter prder). Then, the

cumulam-bued power spectra are obtained as followsI.

w(k) (. I(h)Vkl (A.3-2)

where,

()- 7/x(k)

where 8(k) is the Knaecker dela function.
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The A power specrmn is obtained as follows: Firt, a rank p app oximation of the matrix C

is obtaned.as. .VvI, where I is odine from S by seuing j, -0, k -p+l,...,+ .

The AR Parmneter vecor is then obtained as the solution to (a - 0; the method in

Cadzow2 1 is used, and the solution is forced to have unity modulus.'

The ML(Capon) solution is given by.

_ I' /(W)v.lI (A-3-3)
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IA INTRODUCON

This appendix presents an overview of the definitions, properies, and estiation

methods of higher-Order statistics or cumulmts of stochastic signals and their associated

Fourier tmsforns known as higher-orda spectra or polyspec as presented in the tutorial

ref ces.2,15,16

B.1 MOMENTS AND CUMULANTS

Hilgher-order spectra of stationary stochastic signals ar defined in tems of cumulats

and are referred to as cumulam spectra. Given a set of real random variables

. .their joint cumulants of order r k + + + aa defined as

Ck ... &(J 1 . 3  Lam ... " A* HY (@,

where

S(0,,W2, _., ,) = E (expj(WrT + ... + a.X,)) (B.1-2)

is their joint characteristic function. The joint moments of order r of the same set of random

variables ae given by

"AI" ... k'. "" ' X-2 ... "-..

CIW I .. C-3)



62

"Mhe joint cumulans can be expessed in terms of the joint moments of the set of random

variables as follows for the moments mngmmM4 :

M33 E (Xj) m4  E fx4)

of he random variable (I) are related to its cumulants by

C2 *J 13

22c. a m3 - 3m.m, + 2jol

c4=m - 4m", - U4+ 123"23 - 6M4.

It is clear that the computation of dte rh-order cumulam of (zI) requires knowledge of all its

momems from order firt to rth i.e., m'1 m2,...,m,. If (z(k)), k = O,±1,* ±2, ... is a real,

strictly stationary random process with zero mean, E(z(k)) = 0, then the moment sequences of

the process are related to its cumulants as follows:

:(?,,2,...,?_ ,) - ,Ztx(k)x(k + r,)...x(k + T. - (.-4)
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wher the Moments up to order n exist and depend only on the time diUeMece

TI V-T - V* Taking into account the zero mean condition above, the culmulait ame

related to the moments as foilows for orders n - 1.2,3A4

M1 - ~(k)) a0 (Am mdu,1), (B.1-Sa)

= - m1 = m~'(~) = Ex(k;)z(k + (B.-5b

where is the autocorreaton sequence.

CS TO (,, 2 -401- ~'i, +O m-:. MI T'(~ + 2mz52

(B. -5c)

CSX(IPTO= 84~(r,,r 2 ) 'a Erx(k)x(k.: 1 )x(k+ TO

(thbvl-orde momen 4z cumuiwt sequenc),

= .(: 3 q,, - '(T) -N(03 - :2) - N T

4 3- TI) -u4'(TO n, '(02 - TI) - 5mf N(0 - Tl 3- )

+ 403(: - :2) + M02(: + TI)J 6Mj'

(B.1-5d)
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C4 -T-g) -u'(,) r'ý

E (z (k) x(k + TI) x(k +,c2) x(k + -)

0biwrh -older momew equenc).

Equtions (B.l-Sa)-(BI-d) illustate that while the moments up to third order are identical to

cumulants for zero mean stationary random processes, the generation of the !ourth-order

cumulant sequene requires knowledge of the fourth-order moment and autoconeation

sequencs

By putting the delays = 0 in equations (B.I-Sa)-(B.1-5d) with the zero mean

assumpdon, the variance, skewness, and kutosis become

S- C;'(o) _ E ( 2(k)) (ia nce)

Y3 - C'(oO) - E(x'(k)) (wn=) (B.1-6)

yZ- Cu1(O.,0,Y) _E(X 4 (k)) -3vJ btss

B.2 HIGHER-ORDER SPECTRA

HiSher-order spectra of stochastic signals are usually defined in terms of cumulants

and not moments for two reasons: (1) for a stationary Gaussian mdom proce, ali of the

moments for R > 2 although generally non-zero, provide no new information, while the fact

that the joint cumulants for n > 2 are identically zero conveys this explicitly, (2) if the random

vauiables {zX,...,x,) can be divided into any two or more groups which are statistically
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independeM their th.-ofter cumulants am identically zero thus providing a measure of

statistical independence. (te nth-order moments m non-zero.)

Assuming that the cumulant sequence is bounded, i.e., satisfies the condition

S• t.. g
ftt n&-rde cuml-n spctu Cz

of (x4k)) exists and is continuous and is defined as the (n-l)-dimensional Fourier transform of

the nth-order cumulant sequence

COS(0,,'.-- W2 ... ) I w•_-

(B.2-1)Ca+ ( T. IV... _I)."
&V (p-j (wIT I + W,2'2 + .. + OX-. Ts.,))

lW, I~xfiwi - 1, 29-9 -Iw Imie + W2 + +-- -÷•,_ I :C .

In general, C:8 (Q1 , •a, "" G=- is complex for n >2, i.e., it has magnitude and phase.

(B .2-2)C.* (W It , --- I.) - Ic (i (•,...,t,,.,) I epJ *X on-,., .,).

The cumulant spectrum is also periodic with period 2x, i.e.,

(Wit ... ,•,.) = 2a,...,,_ + 2u).

MW power spectrum, bispecum, and trispectrum are special cases of the nth-order cumulant

spectrum defined by equation (B.2-1),
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P~we Spoevam u 32

2x m r'()-~sI) (B.2-3)

Wherec; c(T) is the covauice sequence of (4fk)) given by equation (B.1I-Sb). FromD euation

(B.1-5b) mid equation (B.2-3) we have

! ) q - W (B.24)

C; (W) 0 (MeLRM81 fu~gt w Juadeu).

-; 1Il Ts V j(IT + 0i2'T2))

10 1 t X (21) X, I m W1+ 219X

(B.2-5)

where c.:(T,, TO) is Methe iin-order cumulan seque=~ of (4k)) described by equation (B.1-_

50). lmn aM= sYinmetaY conditim foilow freun equatio (8.1-Sc)
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ess* (TI Z ;(VT1 ;H - T3)

C -02 * ( - TV T) (8.246)

C3 c(-Ti. T2  d-

lit defintion of fit biapectm in equation (B.2-5) uid the properties of third-order

cumuluits in equation (B.246) give

' * 2_I W) -C;(-cW - W'2"'2) (B.2-7)

*C;(o, -0ii -3 ;(41 0 01

Thsknowledge of debispectnm in thetrlmgtalareglo (42~ a 0'W '2 W 02Xi

enough for a complete descrkipion of fit bispectrm.

Trhpecauva: x -4

4(2X)3 - -

(B.2-8)

I-dISOw2I3,(-j (I ~I(02 T + +3T

*Inne C4 C:,. ?2, r) is the fouMt-ocder cumulant sequence giveni by equation (8.1-Sd).

Symmetry properties can be derived for die trisectnum. similar to thos given in equatkin

(8.2-7) for the bispctrm.
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A normalized cumulant spectrum which combines the cumulam spectrum of order

ii, call (Olt.*,0 anifd the power spectruim, q ~(0). ofa process may bedefinled a

PaV (wit C; (WI, Or-l.-,)..,)
• •( -• ,-) "•'MWI + W2+ + W- 1-) Im

(B.2-9)

The third-order (n =3) case is called the bicoherence which is the normalized

~biseum

P_ _ _ _ _ _ _ _ _ __;_W_._ _ _ (B.2-,10)
[" (, 1 ) C; (W2) q. (,, 1 + 02)] )

where is defined in equation (B2-5) and C;s defined in equation (B2-3).

The six symmeuy regim of the third-oder cumulam. as given in equation (B2-6) and

the twelve symmetry tegions of the bispecrumn as given in equadon (B.2-7) am listed below

and shown in Figures B.-la and B2-lb:



69

aM~UIW -y~tre -~cu -yfcu

1.s 1..T)C;( 9w

3.;(-2 , Z 3. r-0,W+W2

4. C -c~ 11 2 - TI 4. (-g 1 , ', + c.,)

5.S~ T. -,.-I . ;(W,-oW)

10 Cr (WI, -~ -

12. rwI+W2 O
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T2

( a,

0

Figure B.2-18a Fige BJ-lb

The sx symmetry regions of the TMW twelve symnnetry regiuius of the

third order cwntulant hmctloin C;(TI, T2) biMcu I P C'W2,~)

T additional symmetries as defined by the extremities of the outer hexagon in the above

figure are due to the effects of a discrete -m fequency bispectnum as opposed to

the standard inner hexagon symmetry rion of the continuous time bispectnum correspond

to a band limited process. The net result is an additional set of twelve symmetry regions

defining the borders of the outer hexagon. The double periodicity of the bispectrum causes

this effect and Is illustrated in a Figure B.2-2 from Allison.24 The block capital "C notation

defines conjupgt symmetry regions of the blspectrun while the boxed numbers donate

equivalent regions of the discrete time bispectim. Figure B.2-2 reflects a normalized

sampling frequency - I with the lighter shaded region being the zero pan of the bispectrum

for a bandlimited process indicative of a properly sampled, stationary time series, The darker

shaded region represents the non-zero part of the bpecum
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Figur 3.22 Funamenal Douhi f2Durt beDqeia

Fil the. daFunk d sa cmpexntatomionar pocess, the sien 11sorecrcumulmi eie

Previous -E6(kpzckr)). prpeties aplysopslelytoakeanauethsignjuals7etensiothto

If te dta(kx(k+)). i ort thraon cmlemsaioar anestheasetconjugater culanti be plaed

eithe on one or two entries of the triple product in equation (B.1-5c). Only one placement,
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however, defines which anm of th symmetry relaions given in equation (B.2-7) remains valid.

In general, the bispectrum of complex signals has twofold symmetry about an axis defined on

( (I - -. 5a ),0 - -) 2). See Figure B.2-3 for thedistributions

of responses in the bispectral domain as a function of the placemen of the conjugates for the

third order cumulants.

022

- W1

Figure B.2.3 Distribution of the responses in the bispectral domain as a function of

third order cumulant conjugate placement

For example, if the first quadrant w9, 12>0O is preferred then the third order cumulant is

defined as c'(?,, T2) - E{x" (k)x(k + *)x(k + Tý).

The following relations define the bispecrum of complex-valued signals for all

possi-ble positions of the complex conjugate:
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F

E~*(k)x(k + ti)z(k + --F Xw1 (2)X*( 2

with the symmetry relatlo -3(jw -3(2 wI)

E~z(k)z *(k + -c )x (k + c2) F > X*(-W)X(-W)X(-W 1  W2) >

with the symmetry vehitim. - -

CSzk~ (IW2 r) CS -W -W2) '

with die symmetry relation q-l Z

with the symmntry whm Iadon -Oc(2

E (z*(k)z(k + -c) k+ TP< - > <X(WX'(W2 )X*(W + W)

With the symmetry wwaton C3wvW)- C;'QW1, -WI - W

where F denowe the Fairler transfoirm pair and < deno=e fth ensemble avemag.
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The uipe w o aspct of the bispectrum is self evident fom its definition as the

Fourier tranon of a third omea cumulam- in equation (B.2-1). This definition implies that the

bispectrum at a particula frequency pair (w. w) is non-zero if at least one of the three spectral

resW=~ X(W). X(WA) arid X j+ W)is correlated with the other two since

C Q(,Pcm) . <x(,)x(,uX'(W + Th. Iis definition arises from a Fourer-Stiehies

Veus entation of X where the distinction is made between the power spectrum repnesentation of the

contribution aD the mean product of two Fourier components whose frequencies anm the same

compared to the similar bispectrum contribution involving three Fourier components where one

frequency equals the sum of the ohr two.h15
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APPENDIX C.

SIMULATED/REAL DATA TEST RESULTS
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C.0 POWER SPECTRUM/BISPECTRUM COMPARISON FOR SIMULATED DATA

Figures C.0-1 through C.0-3 show a comparison between the power spectrum and

bispectrum of a harmonic (pure tone) for three different states: (1) noiseless (Figure C.O-1), (2)

low noise (Figure C.0-2), and (3) high noise (Figure C.O-3). The low and high noise states

repesent signal-to-noise ratios (SNR) of 16.5 and -3.5 dB respectively where the SNR is

defined as the ratio of the signal variance to the noise variance; when expressed in dB, it is

given by 10 log (op* 02) where 0.2 is the variance of the signal and 0 2 is the variance of
4 a

the noise. The bispecwrA was computed using a FFF size of 256 corresponding to the data

length as no averaging was performed. The bispectrumn slices reflect the effects of no

windowing and a Rao Gabr window of length 5 for smoothing purposes. The slices with the

highest bispectral value in the triangular moion of support were chosen, a convention followed

in bispectral processing.s The pure tone was designed to show up at .5 hz for this set of test

cases with a sampling rate of 2 hz. The noise states were generated by adding Gaussian noise

to the pure tone. The plots indicate essentially no difference in the signal peak to noise level

reprmntations between the power spectrum and bispectnim for the noise states in Figures C.0-

2 and C.0-3 respectively.

C.1 DIRECT/INDIRECT BISPECTRUM COMPARISON FOR SIMULATED DATA

Figures C.1I- and C.l-2 show a comparison between the conventional direct and

indirect methods for estimating the bispectrum as defined in sections 2. 1.1 and 2.1.2

respectively. The data for the figures was generated using the Hi-Spec program "qpc..en"

which genmeres quadratically phase-coupled harmonics in noise as defined in section A.0 of

Appendix A. Figure C.1-l represents bispectral processing using a quadratically phase coupled
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synthtc consisting of three quadratcaly phase coupled harmonics at frequencies ft = 0.12, 2

=0.18, and f3S fa + C2a0.30 hz. The data was segmented to reflect independent

realzaons. For each realization the phases of the first two harmonics were chosen randomly

with the phase of the third harmonic set to the sum of the phases of the first two. A total of

64 independent realizations, each consisting of 64 samples, were generated. The amplitudes of

all three harmonics were unity and the signal was noise free. Figure C.1-2 data was identical

to Figure C.1-1 with the exception that Gaussian noise was added to the signal to obtain an

overall signal-to-noise ratio of 0 dB.

The direct bispectrnus from left to right reflect no windowing and a Rao-Gabr

window of length 5 respectively. Similarly, the indirect bispectrums from left to right reflect

no windowing and a Parzen window respectively. The FTF size in both cases was 128 with

the number of lag chosen in the indirect case for the estimation of the higher order moments

being 21. (It is suggested as a rule of thumb in Hi-Spec that the number of lags should be set

to the number of samples per segment divided by 10.)

The severe deterioration of the indirect bispectrumn estimate for the noisy data in

Figure C.1-2 was unexpected relative to the successful suppression of noise noted for the

dinrt bispectrum estimate in comparison. The skewness of the noiseless data in Figure C.1-1,

a function of the quadratic phase coupling, was 0.82 indicating highly skewed data. The

skewness of the noisy data in Figure C.1-2 was 0.36 indicative that the phase coupling

corvnirlion to the skewness was not masked by the addition of Gaussian noise. It is

worthwhile to note that for the generation of uncoupled sinusoids at the same frequencies,

0.12, 0.18, and 0.30 hz, the noiseless skewness was 0.03 while the noisy skewness was -0.01

indicative of symmetry which explains the inability of tie bispectrumn to differentiate

uncoupled sinusoids from symmetric pdf noise.
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The indirect btspectnim's inability to sufficiently suppress the noise in Figure C.1-2

along with resolution problems noted in Figure C.1-1 (note the loss of the quadratic phase

coupled triplet in the Paren window case) dictated the use of the direct bispectumn for

comparison against second order statistical methods for this paper. The problems related to

the indirect bispectuw remain unresolved at this time pending further study in regard to the

theory and algorithmic implementation in Hi-Spec.

C.2 POWER SPECTRUM/BISPECTRUM COMPARISON FOR REAL DATA

Figures C.2-1 and C.2-2 show a comparion between the power spectrum and direct

bispectrum as defined in equations (B.2-3) through (B.2-7) respectively of Appendix B. The

bispectrum was computed using a FFT size = 128 with a Rao-Gabr window of length 3.

Figure C.2-1 is a sonar ping using a 100 ms hop code designated Ping A while Figure C.2-2 is

a II ms pure tone designated Ping B. The 1-quadrant bispectrum is shown via contour plots

with the quadrant symmetry clearly evident as illustrated by the figures in section B.2, in

particular Figure B2.-3, "Distribution of the respomses in the bispectral domain as a function of

third order cumulant conjugate placement," which is in the first quadrant for Hi-Spec.

Bispectrum slices are computed following the convention referenced in section C.0 for

comparison with the power specmam. The ping data limitations constrain the averaging to

approximately 9 segments which mirrors the tests performed in Wilson.29 The frquency

scales have been normalized for sanitizamion purposes and the power

comparison reflects a relative dB scale as a log power spectrumilog magnitude bispeetru is

computed - a parameter typically found in the literature.

ThI figures indicate that no processing gain is realized by the bispectrum over the

power spectrum for detection purposes in both instances. Closer examination of the statistics
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reveals tha the distribution of the rturns had skewness measures of (-0.02, 0.00) and (0.02,

0.01) respectvely for their real/maginay parts. Moreover, the kuntoss statisics were (3.68,

3.15) and (3.19, 3.21) respectvely (a kurtosis of 3 indicates Gaussianity). Clearly, the desired

effects of target dynamics mnd/or modulation necessary to skew the data sufficiently for

b/spectral enhaememt via suppression of Gaussian or non-Gausian symmetric pdf noise were

not enoulh3"484 9 .

The data analyzed relpreseed shallow water scenarios. A toa of approximately 1 1

pings were examnined with the results in all cases similar to those described in Figtues C.2-1

and C.2-2. The average echo skewness measure over I I pings was (0.01, -0.00) with a

skewness range of ([-0.03 0.03], [-0.03 0.01]) and a standarddeviation of (0.02, 0.01). The

a verage echo kurtosis measure was (3.47, 3.47) with a kurtosis range of ([2.67 4.84],

[2.60 4.33]) and a standad deviation of (0.73, 0.4). These numbers appear to be well withn

the bounds of Gaussanit for skewness with only a slightvaince for kuntosis. The

corre •spod number for Ut revecberaion dratin the neigbodo of the echoes was (0.00,

0.00) for skewness with range ([-0.01 0.01], [-0.00 0.01]) and standard deviaton (0.01, 0.00)

which is the crnx of the problm, i.e., the echoes cannot be discriminated sufficiently in a

statstical sense from the reverbrto for successful bispectral processing.
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